Genomic selection using a realized genomic relationship matrix in a Pinus taeda L. cloned population
نویسندگان
چکیده
Genetic merit can be considered the finite sum of thousands of allelic effects, each physically located at some place on the genome, whose transmission can be traced through molecular markers. Traditionally, best linear unbiased prediction (BLUP) of breeding values relies on average additive genetic covariances (the numerator relationship matrix A) derived from pedigrees to utilize information from relatives. For example, all pairs of fullsib offspring of a cross are assumed to share 50% of alleles in common. Such assumptions ignore variation in Mendelian segregation of alleles among progeny within family. With advances in marker genotyping technology and reduction in genotyping cost, it is now feasible to estimate genetic covariances from markers. Linear mixed models that utilize realized genomic relationship matrices could predict genomic estimated breeding values (GEBV) more accurately than those that use expected average genetic covariances derived from pedigrees. Dense markers can be used to trace identity by descent probabilities at each locus, and those probabilities used to construct an incidence matrix. The incidence matrix is used to estimate the genomic relationship matrix (G), which is used in place of the A matrix in solving the mixed model equations. This may allow more accurate estimation of individual breeding values than the traditional model based on average genetic covariances. We estimated realized genetic covariances between cloned progeny of a P. taeda population. There were 165 cloned progeny derived from nine full-sib families. The realized genomic relationships were based on a set of 3,461 biallelic SNP markers. We used the following linear mixed model y = Xb + Zu + e to estimate GEBV. In the model X and Z are incidence matrices, b is the vector of fixed mean, u is the vector of additive genetic effects that correspond to allele substitution effects for each marker with Var (u) = Ism; where s 2 m is the marker variance and I is the identity matrix. The term e is the vector of residuals. The dimension of Z is the number of individuals (n) by the number of loci (m). The regression method used to construct our G matrix did not require allele frequencies; instead, the inverse of the G matrix was generated by regressing ZZ’ as a dependent variable on the A matrix as the independent variable. Therefore, the expected value of G is A plus a constant matrix. Different cross-validation methods were used to test performance of the G matrix. Clones were divided into a training group with both marker and phenotypic information and a validation group for which only marker genotypes were used. In one scenario ~90% of the clones (148) were sampled for training, either randomly selecting within each of the nine families or at random without family consideration. The remaining ~10% were used for validation (17 clones). In the second scenario, ~50% of clones (84) were sampled either within family or randomly from the whole population for training, and the remaining ~50% were used for validation (81 clones). The model parameters estimated in the training set were used to predict GEBV in the validation set. For each scenario, six independent samplings were carried out. The mean correlation between the GEBV based on G-BLUP and breeding values based on A-BLUP were determined for each scenario, along with the accuracy * Correspondence: [email protected] Cooperative Tree Improvement Program, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA Full list of author information is available at the end of the article Zapata-Valenzuela et al. BMC Proceedings 2011, 5(Suppl 7):P60 http://www.biomedcentral.com/1753-6561/5/S7/P60
منابع مشابه
Genomic Estimated Breeding Values Using Genomic Relationship Matrices in a Cloned Population of Loblolly Pine
Replacement of the average numerator relationship matrix derived from the pedigree with the realized genomic relationship matrix based on DNA markers might be an attractive strategy in forest tree breeding for predictions of genetic merit. We used genotypes from 3461 single-nucleotide polymorphism loci to estimate genomic relationships for a population of 165 loblolly pine (Pinus taeda L.) indi...
متن کاملComparing Different Marker Densities and Various Reference Populations Using Pedigree-Marker Best Linear Unbiased Prediction (BLUP) Model
In order to have successful application of genomic selection, reference population and marker density should be chosen properly. This study purpose was to investigate the accuracy of genomic estimated breeding values in terms of low (5K), intermediate (50K) and high (777K) densities in the simulated populations, when different scenarios were applied about the reference populations selecting. Af...
متن کاملAccuracy of Genomic Selection Methods in a Standard Data Set of Loblolly Pine (Pinus taeda L.)
Genomic selection can increase genetic gain per generation through early selection. Genomic selection is expected to be particularly valuable for traits that are costly to phenotype and expressed late in the life cycle of long-lived species. Alternative approaches to genomic selection prediction models may perform differently for traits with distinct genetic properties. Here the performance of ...
متن کاملUnraveling additive from nonadditive effects using genomic relationship matrices.
The application of quantitative genetics in plant and animal breeding has largely focused on additive models, which may also capture dominance and epistatic effects. Partitioning genetic variance into its additive and nonadditive components using pedigree-based models (P-genomic best linear unbiased predictor) (P-BLUP) is difficult with most commonly available family structures. However, the av...
متن کاملA Consensus Genetic Map for Pinus taeda and Pinus elliottii and Extent of Linkage Disequilibrium in Two Genotype-Phenotype Discovery Populations of Pinus taeda
A consensus genetic map for Pinus taeda (loblolly pine) and Pinus elliottii (slash pine) was constructed by merging three previously published P. taeda maps with a map from a pseudo-backcross between P. elliottii and P. taeda. The consensus map positioned 3856 markers via genotyping of 1251 individuals from four pedigrees. It is the densest linkage map for a conifer to date. Average marker spac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2011